VERTICAL MOTION | KEY FACT

- All objects in <u>'freefall'</u> accelerate towards the Earth with constant acceleration of $g \approx 9.8 \text{ ms}^{-2}$. >
- > When solving vertical motion problems *always choose a 'positive direction'*.

VERTICAL MOTION | EXAMPLE PROBLEM PAIRS

- 3E. A small ball is thrown straight downwards from a window 4.6 m above ground, with an initial velocity of 1.2 ms^{-1} . Air resistance can be ignored.
- (a) Calculate the time taken for the ball to hit the ground?
- (b) Describe how your answer would change if air resistance was taken into account.

4E. A ball is thrown vertically upwards from ground level with

(b) Find the time from release when the ball is at a height of

(a) Calculate the maximum height reached by the ball.

12 m and travelling downwards.

initial speed 20 ms^{-1} .

- 3P. Jill drops a stone into a well. A splash is heard 3 s later.
- (a) Calculate an estimate of the depth of the well.
- (b) State one assumption have you made about the forces acting on the stone.

Hint: Consider the initial velocity of an object that is 'dropped'.

- 4P. A ball is projected vertically upwards. The maximum height reached by the ball is **78.4** m.
- (a) Calculate the initial speed of the ball.
- (b) Find the times at which the ball is at a height of $40\ m$.
- (c) Hence find the time for which the ball is more than $40\ m$ above the ground.

5E. A stone is thrown upwards with a velocity of 6 ms^{-1} , from a platform 1.2 m above the ground. Find the velocity of the stone when it hits the ground.

Use $g = 10 \text{ ms}^{-2}$ giving your final answer to an appropriate degree of accuracy.

5P. A boot is thrown vertically upwards from a point x metres above the ground. Its speed of projection is 4 ms^{-1} . The boot lands on the ground 2 seconds after being thrown. Find the value of x.